Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2–Acetic Acid Interface

نویسندگان

  • Hadeel Hussain
  • Xavier Torrelles
  • Gregory Cabailh
  • Parasmani Rajput
  • Robert Lindsay
  • Oier Bikondoa
  • Marcus Tillotson
  • Ricardo Grau-Crespo
  • Jörg Zegenhagen
  • Geoff Thornton
چکیده

The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rice grain-shaped TiO2 mesostructures by electrospinning for dye-sensitized solar cells.

Nanofibers, produced by electrospinning a solution containing titanium tetra(IV) isopropoxide, polyvinyl acetate and acetic acid in N,N-dimethyl acetamide, upon sintering at 500 °C produce rice grain-shaped TiO(2) mesostructures. Each rice grain-shaped TiO(2) has a mixed crystal structure and high porosity and the mesostructures are found to have applications in dye-sensitized solar cells.

متن کامل

Ordered Carboxylates on TiO2(110) Formed at Aqueous Interfaces

As models for probing the interactions between TiO2 surfaces and the dye molecules employed in dye-sensitized solar cells, carboxylic acids are an important class of molecules. In this work, we present a scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) study of three small carboxylic acids (formic, acetic, and benzoic) that were reacted with the TiO2(110) surface v...

متن کامل

Application of azo dye as sensitizer in dye-sensitized solar cells

An azo dye used as photosensitizers in Dye-sensitized solar cells DSSCs. Azo dyes economically superior to organometallic dyes because they are color variation and cheap. The spectrophotometric evaluation of an azo dye in solution and on a TiO2 substrate show that the dye form J-aggregation on the nanostructured TiO2 substrate. Oxidation potential measurements for used azo dyes ensured an energ...

متن کامل

Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis

Multilayer dye aggregation at the dye/TiO2 interface of dye-sensitized solar cells is probed via first principles calculations, using p-methyl red azo dye as an example. Our calculations suggest that the multilayer dye aggregates at the TiO2 surface can be stabilized by π…π stacking and hydrogen bond interactions. Compared with previous two-dimensional monolayer dye/TiO2 model, the multilayer d...

متن کامل

Combined experimental and theoretical investigation of the hemi-squaraine/TiO2 interface for dye sensitized solar cells.

A simple hemi-squaraine dye (CT1) has been studied as a TiO2 sensitizer for application in dye sensitized solar cells (DSCs) by means of a combined experimental and theoretical investigation. This molecule is a prototype dye presenting an innovative anchoring group: the squaric acid moiety. Ab initio calculations based on Density Functional Theory (DFT) predict that this acid spontaneously depr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2016